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Woe describe a method that has procedures similar to the Monte
Carlo method for solving the Boltzmann transport equation, but is
deterministic, and thus fundamentally different. In this new method,
the distribution function is discretized and tracked in phase space.
The scattering rates couple initial and final k states, eliminating the
need for final-state calculations. The advantages this affords are
numerous, although it is disk-space and memory intensive. @ 1995
Academic Press, Inc.

1. INTRODUCTION

The Monte Carlo method (MCM) [1-3] has gained wide-
spread acceptance for solving the Boltzmann transport equation
in semiconductors for research applications. In general, the
MCM is a semiclassical method applicable to a wide variety
of useful problems, and modifying the program, for example,
by adding a scattering mechanisms is comparatively easy. These
advantages often make the MCM the ‘‘method of choice™ for
new structure and transport conditions [4, 5].

It is not always, however, the best choice. A common com-
plaint about the MCM is that it is computationally expensive,
in terms of both memory usage and CPU time [6, 7]. The time
step is often orders of magnitude less than the desired simulation
time [8]. Also, the MCM is based on physical statistics, so
stochastic noise is present in the results, and more precise
results require greater computaticnal resources. There are other
limitations, but most of these are more closely attributable to
limitations of the Boltzmann transport equation and the inde-
pendent electron approximation, rather than the MCM [9].

Our intent in this work is to describe a method that retains
the advantages of the MCM, vet eliminates the stochastic noise,

* Present address: Motorola Corporation, APRDL MD K-10, 3501 Ed
Bluestein Boulevard, Austin, Texas 78721.

and that can exploit modern vector and parallel computer archi-
tectures to gain a potential speed advantage. Qur method, the
discretized k-space method (DKSM), meets these expectations,
but nonetheless introduces new problems. We believe these
problems are tractable and will eventually be overcome. At the
very least, the DKSM might lead to the development of related
methods that mitigate the problems of the MCM. In this paper,
we show that the DKSM is a promising future alternative to
the MCM.

The objectives of this paper are to (1) show our complete
method, (2} show realized and potential advantages of the
DKSM over the MCM, (3) candidly discuss the current short-
comings and pitfalls of the DKSM, and (4) demonsitrate that
the DKSM is feasible by calculating steady-state, homogeneous
electron transport in Si,

2. METHOD

2.1. Background

There exists a wide, eclectic range of methods for solving
the Boltzmann transport equation for charge transport in semi-
conductors. A short list of solution procedures includes the
MCM, drift-diffusion |6, 10], iterative integral [11], direct inte-
gration [12], scattering matrix [13, 14], and basis-function
expansion [15, 16] methods. One of the methods very similar
to the DKSM is briefly described by Fernandes and Santos {17}
who first introduce and realize the idea of a scattering matrix
connecting states in k space. Another similar method was re-
cently presented by Nougier ef al. [18]. Cellular automata has
also been successfully applied to charge transport in semicon-
ductors with numerous advantages over the MCM, including
speed due to a pretabulated k-dependent scattering matrix [19].
Although not applied to semiconductor charge transport, the
Monte Carlo flux method described by Schaeffer and Hui [20]
is like the DKSM in that k space is discretized. In the category
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FIG. 1. Coarse flow chart for both MCM and DKSM. Both methods
model transport in the Boltzmann transport equation by separate drift and
scattering events.

of well known and common methods, however, the DKSM is
most similar to the MCM. To clarify our description of the
DKSM, we compare it with a typical MCM throughout the
paper.

In the MCM, the trajectory of N charge particles are tracked
in 7-parameter phase space; i.e., f(x;, k;, t) is solved where f
is the discrete distribution function, equal to 0 or 1, X is a
spatial vector, k is a crystal momentum vector, and ¢ is time.
It is a semiclassical method in that each charge particle is
drifted according to quasi-classical mechanics [1] and scattered
according to quantum mechanics,

The DKSM is also a semiclassical methed, but it is not a
particle simulation. As shown in Fig. 1, the DKSM uses the
same coarse flowchart as the MCM. The MCM models discrete
carriers in (an approximated) k-space continuum, whereas the
DKSM uses a discrete k space with a continuous occupation
probability. Instead of tracking the trajectories of charge carri-
ers, in the DKSM the distribution function in cells of the Bril-
louin zone is tracked subject to drift and diffusion. Drift and
scattering refer to f(x;, k;, £} in each k-space cell, rather than
to simulation electrons. The distribution function is continuous
in the range [0,1] and is assumed to be uniform in each cell.
During the drift stage, f(x;. k. 1) in every cell is shifted the
same amount according to the field at x; and the time step. At
the end of each drift stage, the aggregate scattering in and out
of every cell, ie,, the change in f{x;, k;, ), is determined
according to a precalculated scattering matrix.
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In our calculations, we divide the Brillouin zone into cubic
cells, each with edge length Ak. Our primary criterion for the
selection of a gridding scheme is programming ease. A cubic
cell reflects the crystal symmetry of the most important semi-
conductors and fills all the & space without overlap. Orthorhom-
bic and tetragonal cells have no general-purpose advantages
in a cubic semiconductor, and the interpolation simplicity of
tetrahedral cells does not outweigh the added complexity in
the DKSM, particularly as it relates to drift. Translational sym-
metry in the orthogonal axes directions with identical lattice
constants make the cubic mesh the easiest to program, verify,
and maintain.

2.2. Initialization

In a MCM simulation, if starting at equilibrium, stmulation
electrons are distributed according to the Fermi—Dirac distri-
bution,

FE) =[] + =&t (1)
where Er is the chemical potential, ky is the Boltzinann constant,
and T is the carrier temperature. For clarity we consider only
homogeneous transport, and so we neglect x. The chemical

potential is determined by the electron density # from the re-
lation

n=[ fEE) dE, 2)

where the integral is over the conduction band, and g(£} is the
density of states. To initialize the electron energy states from
Eq. (1), either the rejection technique or a numerical form of
the direct technigue [2] can be used. Once the initial energy
for a simulation electron is found, k is selected randomly and
uniformly on that isoenergy surface. Thus, in a MCM, both
initial energy and initial k states are determined stochastically.

In comparison, in the DKSM the average occupation proba-
bility f(k;) is initialized as a thermal distribution according to
a Fermi-Dirac distribution,

f(k,) = [] - e(E:h;)—EF))!kBT]*I’ (3)
where here E(k)) is the energy at the center of cell {. We assume
that the cell is small enough such that f(k;) can be assumed as
uniform in each cell. The Fermi level in Eq. (4) is determined
such that the numerically summed density is equal to the nomi-
nal (input) density, . If ; is the volume of cell i, the electron
density is given by

-1 \
= o 2 f(k@)Qij 4

where the summation is over all cells in the Brillouin zone.
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FIG. 2. Flow chart for scattering in (a) the MCM and (b) the DKSM. In the discrete time step MCM, each electron in the simulation is checked for
scattering. If scattering (other than self-scattering) occurs, then the electron’s final state must be calculated for the chosen scattering mechanism. The check
for scattering, the scattering mechanism choice, and the catculation of the final state each involve a weighted random selection. The DKSM, in contrast, is
completely deterministic. For each initial state i in the Brillouin zone. there is a loop over final states j as defined by non-zero scattering rates §j;.

Cells on the boundary of the Brillouin zone may be cut by the
faces of the zone and, therefore, {); is not a constant, even for
a constant grid.

2.3. Scattering

The physical approximations behind scattering are the same
for the DKSM and the typical MCM. Scattering rates are calcu-
lated in the Born approximation and the independent electron
approximation [21]. Scattering rates can be calculated prior and
independent to the transport calculation, except for carrier—
carrier scattering which must be integrated over the distribution
function, although near equilibrium this too can be done analyti-
cally. The scattering process is treated as an instantaneous
event, independent of the field. This separation of drift and
scattering is the essence of why it is easy to add physical rigor
in the MCM. (Since the DKSM is a variant of the MCM, this
advantage still holds.) The collision term of the Boltzmann
transport equation is a non-local integral and is usually at the
root of the difficulty in direct solution methods.

The scattering procedure in the MCM is shown in the flow-
chart in Fig. 2(a). Scattering rates are normally stored as a
function of initial-state energy [22] and initial valley or band.
The discrete-time step version of the MCM [23, 24] is described
here since it is most similar to the DKSM. In the discrete-

time step method, each electron is stochastically checked for
scatlering after a short constant time step, At, according to its
scattering rate. If it does not scatter, it takes very little run time,
The primary constraint on the time step is that it be much
shorter than the inverse scattering rate, At <€ min(r), where
l/7 1s the total scattering rate. After an electron is chosen to
scatter, a scattering mechanism is randomly chosen according
to the relative scattering rates. The final state is then calculated,
which can consume considerable run time, particularly if a
g-dependent scattering mechanism is chosen. An advantage to
the discrete-time step method is that it permits a straightforward
synchronization of scattering events, which is helpful when
including carrier—carrier scattering and when vectorizing the
code [24, 25].

Since most carriers undergo self-scattering at the end of each
drift time step, however, waiting for the final state calculation
of a small fraction of the electrons is a bottleneck in a finely
parallelized MCM computation. That is, even though a particle
simulation suggests parallelization, because the particle trans-
port calculations are poorly synchronized, the MCM can be
expected to have a performance handicap.

Figure 2(b) shows an expansion of the scarter block from
Fig. 1 for the DKSM. The scattering rate is calculated and
stored for k states and not integrated over the energy as is
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usually done in the MCM. Next, the distribution function f(k;)
is redistributed according to the scattering matrix, §,;. The scat-
tering procedure for one time step is finished when all the
appropriate final states for each initial state have been con-
sidered.

The scattering rate matrix is calculated independently of the
transport calculation and is material dependent only, i.e., in
this approximation it does not depend on the field. To calculate
transport in a different semiconductor, the only change is to
generate new 5; and band structure files for the different mate-
rial; no macroscopic material parameters (such as mobility) are
input to the calculation.

The fraction of the distribution function in cell { redistributed
by scattering to cell j is

Afileus = FE) 1L — exp[—5;(1 — f(k)) At]}. (5)
S, lscaner 15 subtracted from f(k,) and added to f(k;) for all cells
i and j for which S; # 0 and f(k) # 0. To avoid corruption
of the distribution function, f(k;) and f(k;) are used at the
beginning of the time step. To comply with the Boltzmann

transport equation, the time step must satisfy

1 > max (2 (- e-%ﬂ')) (6)

for all cells ¢, or to first order in §; As,

N
Ar <€ I/max (2 Su) (7
7

The scattering procedure in DKSM is the same for each
initial cell, and each scattering of an initial state to a final state
takes the same amount of run time, There are no (random}
selection processes in the DKSM, nor extra cafculations for a
particular cell. This, and the independence between cell pro-
cessing, makes the DKSM a good candidate for parallelization.

2.4. Drifting

In the drift stage of the DKSM, f(k;} in each cell is shifted
tc other cells according to

dk
fi E = g&, (8)

where ¢ is the electron charge, € is the field vector, and 4 is
Planck’s constant. We restrict drift in one time step to the
adjacent cells. This is an algorithm limitation and is not intrinsic
to the method. This restriction simplifies the drift algorithm
and only slightly lengthens run time. The portion of a cell
drifted in each direction is then given by
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FIG. 3. Two-dimensional schematic of drifting. According to the field
vector and time step, portions of f{K) in each cell are distributed to adjacent cells.

= 9E
S5k = 5 At (9)

The vector components &k,, &k, and Sk, are dimensionless
values normalized to the edge length Ak To limit the drift
process to (at most seven) adjacent k-space cells, the time step
must meet the constraint

f Ak

~ gimax(e,, &, €] (10)

Normally the scattering constraint, Eq. (7), limits the time step
except for very high fields.
The fraction of f(k;) redistributed to cell j because of drift
is, thercfore,
Aﬁj |drm =f(ki)ﬂi AQ;;', (1)
where Af),; is the fraction of the volume of cell i that drifts to
cell j. If cell i is represented by the vector (k,, k;, Kk}, then

Afl; = 80, 802, 611, (12)
where for the x component,
Ok, ik, =k,
8Q, = (13)
1 — 8k, ifk, =k, + Ak,

and similarly for the other components. These terms are defined
in two dimensions in Fig, 3; the third dimension is omitted for
clarity. As an example, the portion of cell i, that is shifted to
the cell directly along the y axis is
AQ, = (1 — 8k dk,(1 — &k,), (14)
where j, = (k. k, + Ak, k).
Drift on the Brillouin zone borders must be dealt with care-
fully. First, the number of electron states in each cubic cell is
(AkY/47%, but cells cut by the L-point face of the Brillouin
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zone are not cubic. We treat these cut cells as cubes during drift,
but we Iimit the number of available states in each according to
their k-space volume, ;. Second, periodic boundary conditions
are enforced for the reduced Brillouin zone by a one-to-one
pairing of each border cell with a cell offset by one reciprocal
lattice vector. Third, if 6k, .. 7 1, drifting in the DKSM leads
to a non-physical k-space redistribution because f(k;} is forced
to be uniform in each cell at the end of each time step. A
similar problem is well known in cellular automata calculations
of electron transport [19]. We currently avoid this problem by
considering only fields along {100}, {110}, or {111} and choos-
ing At such that AQ; equals 0 or 1. This method works because
one of the grid axes is parallel to the field. As with every other
problem in the DKSM, reducing the cell size improves the
physical rigor and adds acceptable alternative approaches.

2.5. Conserving Memory

Perhaps the most overriding burden with the practical appli-
cation of the DKSM is memory usage. As is common o many
calculations, increasing memory usage can increase program
speed, e.g., by using look-up tables, or it can improve the
accuracy of the results. Since one of our principal goals is to
show the feasibility of the DKSM, program speed is a secondary
concern, although competitive calculations of MCM and
DKSM show comparable run times. The greater memory re-
quirements of the DKSM improve the precision of the solation
over the MCM. In this section, we discuss techniques for reduc-
ing the memory needs for the DKSM while maintaining physi-
cal rigor. In Section 3.2, we outline other possible trade-offs
for conserving memory.

The transport program size is primarily determined by four
arrays: the scattering matrix S;; (each element of which is a
real number) and vector components of the final state, k., k;,
and k;, (each element of which we identify with a small integer).
The size of each of these arrays is given by the product of the
number of initial states in the primary wedge and the maximum
nurmmber of final states, both of which are largely determined
by the cell size.

The constraints on the cell size are

(i) the energy resolution needed for absorption and emis-
sion processes,

(ii) drift and scattering conditions,
(iii) representation of f{k) fine enough for accurate calcula-
tion of macroscopic observables, and

(iv) the maximum practical program size permitted by
the computer.

The first three are upper bounds; the last is a lower bound. The
number of initial states is proportional to the volume and so it
increases as ~1/(Ak)’, and the number of final states increases
with ~1/(Ak)? because the density of states is an areal sum.
Therefore, unfess final states are independently limited, the
program size increases as ~ 1 /(Ak)*. For example, for 10 inter-
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vals between I' and X points, i.e., Ak = 15(27/a), there are
4600 cells in the Brilleuin zone; for 30 intervals, or Ak =
s5(2mwfa), there are 113,400 cells, almost 3° more. After much
experimentation, we chose a grid with 30 intervals between I’
and X points. We explain this choice near the end of this section.

Concern over the memory requirements is first encountered
in the disk usage of the scattering rate matrix. 5, is calculated
and stored to disk for later use by the transport calculation,
For each initial state, scatlering rates are separately sorted for
ernission and absorption (using a linked list) from highest to
lowest. The information stored is the initial state /, the number
of final states with non-zero scattering rates for #, followed by
a list of each final state j with its scattering rate. This sequence
is repeated for each state / in one irreducible wedge of the
Brillouin zone, here called the primary wedge. Any of the 48
wedges can be designated the primary wedge. To save disk
space, unique integer codes are used to define i and j, and *0.”’
is written for repeated scattering rates, Binary file storage saves
little disk space over a carefully formatted ASCII file. Other
more elaborate coding methods can be used, but likely at the
expense of readability.

The cubic symmetry of the semiconductor is exploited to
save memoery and disk space through the use of state transforma-
tions. A closely related transformation technique is commonly
employed in full-band MCM simulations in the use of E(k)
{9, 26]. Figure 4 shows two Brillouin zones, each with two of
the irreducible wedges shaded, to illustrate state transformations
in an f-type scattering. For a cell / anywhere in the Brillouin
zone, the transform T to the primary wedge is determined
such that

Ti=i' (13
T is a set of symmetry operations belonging to the point group
of the lattice. The scattering matrix $;; is only calculated and
stored for transformed initial states /' in the primary wedge,
although final states j' can be anywhere in the Brillouin zone,
This is shown in Fig. 4(a). The final state j' is determined
relative to the primary wedge, so it must be inverse transformed
to find the actual final state j, as shown in Fig. 4(b), i.e.,
7' =] (16)
The transforms T and 77" are kept as stored arrays to save on
run-time transformation calculations; this is important since the
CPU time for the DKSM is largely spent in the scattering
procedure. By using a primary wedge and this transformation
procedure, memory storage is reduced by a factor of 48 because
S, is not stored for every possible initial state in the Bril-
louin zone.

To further control program size, we take two steps to limit
the number of final states in §;;. First, scattering is limited to
energies near the center of final-state ceils. Eligibie final states
are determined according to the energy and gradient at the
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Iustration of a scattering transformation for an example set of states i and j relative to (a) the primary wedge and (b) the initial state wedge. For

any initial state i in the Brillouin zone, as shown in {b), a point transformation to the primary wedge is determined. Since S; is calculated for (transformed)
states " in the primary wedge, j' is inverse transformed to determine f, which is the final state relative to the (original) initial state i.

center of each cell. We have chosen to consider energies within
an arbitrary radius of 35% of the k-space distance from the
center to the face of each cell. This has the effect of lowering
the number of possible final states, as well as reducing the
number of absorption events wherein the distribution loses
energy, and emission events that cause the distribution to gain
energy. This type of absorption-emission mix-up occurs be-
cause the cell is too large compared to fiw,; L.e., the energies
near the wails of the cell are not close enough to the energy
at the center. Therefore, emission and absorption processes
place an upper bound on the cell size (see list near beginning
of this section}. Figure 5 illustrates the case when no scartering
occurs and shows that reducing the cell size completely miti-
gates this type of problem.

Second, to control the size of §;, we limit the maximum
number of final states to a total of 1200 for each initial state.

tina grid

—t—

|7

;—.V_—_)

coarse grid

FIG, 5. Two-dimensional representation of scattering on a coarse grid
(thick lings) and on a fine grid {thin and thick lines). The example of scattering
from state ¢ to state j shows the failure of the coarse grid in that j = {; ie.,
initiat and final states may be degenerate. For example, a grid with 10 cells
between I' and X points is too coarse compared with fiew,, and this type of
scattering s excessive.

The number of emission and absorption events are allocated
in proportion to the total possible number of emission and
absorption events. For example, if there are twice as many
emission states as absorption states for an initial state ¢, then
the 800 largest emission final states and the 400 largest absorp-
tion final states are included for /. In our calculation of §; for
30 intervals between I and X points, the maximum possible
number of final states is 12,472, and the average number is
7626. In comparison, the limit of 1200 final statcs seems severe.
By sorting from the highest to lowest scattering rate, however,
the 1200-final-states limited total rate is not far from the realiz-
able total rate except at high energy, as shown in Fig. 6. (The
scattering rate calculation {s discussed in more detail in Section
3.1.) Most of the individual rates are very small and do not
contribute much to the total scattering rate. As clearly seen in
Fig. 6, limiting the scattering rate to 100 final states, however,
is too severe even at moderate energies.

With the above upper limits in place, the DKSM transport
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£ ' unlimited final states ‘'
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ki ———1200 final stotes i
oo e 800 final states 1
r ----- 100 final states 1
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FIG. 6. Total scattering rate for an unlimited number of final states, and
for 2 maximum of 1204, 600, and 100 final states. The scattering rates deviate
from the unlimited rate at increasing energy as the number of final states in-
creuses.
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FIG. 7. Scattering rate at low energy for 10, 20, and 30 cells between I’
and X points. Minimizing the cell size, i.e., increasing the number of cells
between " and X points, lowers the minimum energy and decreases the spread
in scattering rates.

program is less than 40 Mbytes, and the ASCII §;, file is 32
Mbytes. It is undesirable in terms of physical rigor to limit the
scattering rate at all, but for the computer system we have
available, it is a practical necessity. Increasing the cell size, or
equivalently decreasing the number of cells in the Brillouin
zone, causes the low-field transport to be compromised. Figure
7 shows the scattering rates on a linear scale at low initial-state
energy for 10, 20, and 30 cells between the I' and X points.
Not only does a finer mesh increase the number of scattering
rate points in the critical low-energy region, it decreases absorp-
tion—emission mix-up by providing energy separations between
cell centers comparablie to the phonon energy, fiw,.

3. RESULTS

3.1. Steady-State Homogeneous Transport in Si

We have chosen steady-state, homogeneous transport in Si
at 300 X to compare the DKSM against the MCM. Intervalley
deformation potential scattering, using Fermi’s Golden rule, is
given by [2, 3]

D 2
87 pw,

+ hw,) dk,

Sj}' =

11
(Nq +3= 5) Lm] SEK) — E(k)
a7

where upper and lower signs refer to emission and absorption,
respectively, D is the effective deformation potential constant,
p is the mass density, @, is the phanon frequency, and N, is
the equilibrium phonon occupation given by

N, = [l — 1771 (18)

TABLE I
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Material Parameters Used in the DKSM and Comparable MCM

Scattering Rate Calculations

Parameter Value Units

i 0.737 (from k- p) my

mE 0.177 (from k-p) Iy

a 5.64 [2] 107 cm

p 233 [2] glem
f.:. D @ hw 0.3 @ 19.0 [2] 108 e¥/cm @ meV
f2: D @ ke 2 @475 (2] 10f eV/iem @ meV
f3: D @ Aw 2@ 59.0 (2] {0 eVicm @ meV
el D @ hw 05 @ 2.1 2] 10* eV/iem @ meV
g2 D @ fiw 0.8 @ 18.6 [2] 1% eV/icm @ meV
g3: D @ ko 11 @ 62.1 [2) 10f eV/icm @ meV

Note. Masses are extracted from the k- p cafculation and not explicitly used
in the §; calculation.

A valley degeneracy factor is not needed in Eq. (17) because
the final state is completely specified. The integration over the
k-space j cell, i.e., the final state, in Eq. (17) is calculated by
determining the area of intersection between a plane (the local
approximation for the isoenergy surface) and a cube (the j cell)
[27, 28). The scattering rate is very noisy at low energy because
the isoenergy surface is ellipsoidal in Si with a radius of curva-
ture small compared to Ak, and so it is poorly approximated
by planar cuts. Material parameters used in the calculation of
S, are listed in Table I. The band structure is calculated with
a 30-band k - p method [29]. The total emission and absorption
scattering rates are plotted in Fig. 8 as a function of energy.
We include only intervalley deformation potential optical
phonon scattering in our calculation of iransport in 8i. Acoustic
intravalley and impurity scattering are very important for the

1o —

emi

1013

W
’l.\:,’“a""’f' L """“‘v"\-"-\d“-.vwﬂ
e
102 Ll g ——-abs "

Scattering Rate (s7%)

1011 ' 1 L i 1 L L ' I 1 L L

Energy {(eV)

FIG. 8. Intervalley scattering rate separated into emission and absorption
terms. Rates are plotted vs energy, although S is calculated and stored for
Kk states.
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Log Distribution Fenction

FIG. 9. The diswibution function in the k—k, plane of the Brillouin zone at fields of {a) 10 V/em and (b) 1 kV/cm applied in the x direction. The z-axis
is logarithmically scaled, highlighting the many orders of magnitude f(k) is kept in the DKSM. The X valleys are most heavily populated, but electrons can
also be found at the K point. At 1 kV/em. electrons can be found throughout the Brillouin zone.

accurate calculation of mobility, but are far less important in
the determination of average energy, [2, 21]. A more complete
simulation that can accurately model Si at modestly high fields
should include acoustic phonon, impurity, and impact ionization
scattering, and it should include at least two conduction bands.

The calculation of §;; for all final states is carefully done to
prevent double counting. The total scattering rate for an initial
state to a final state is summed over all scattering mechanisms,
which in our case means summing over deformation potentials.
J-and g-type scattering specify the irreducible wedges for which
the scattering rate is repeated and added. There are 32 wedges
for f-type scattering (transverse valleys), and 8 for g-type scat-
tering (opposite valley).

Figure 9 shows the calculated distribution function in a cross
section of the Brillouwin zone for 10 and 1000 V/cm applied in
the y-axis direction. This cross section is in the k-k, plane, so
it includes X and X points. Figure 9 is somewhat misleading
in that f(k;) is not explicitly shown as flat in each cell, but it
directly represents the DKSM resuits, 1e., the solution of the
distribution function. Noise seen in the valleys is a manifesta-
tion of the discretization of the k-space grid. {See Figs, 6 and
7 for another example.) Even at only 1 kV/cm, regions between
the valleys are populated, showing the importance of using a
full band method.

The calculated energy distribution, f(E), is an important basis
for the verification of a transport calculation because it is more
readily comparable than f(k). f(E) is the occupation probability
of all k states for which E = E(K;) integrated over the Brillouin
zone. In the DKSM, the output energy distribution function is
calculated from

> fk)QUSE — E(k))
flEY= S :

(19)

where §(E — E(k;)) is a delta function defined here as unity if
E = E(k;), and as zero otherwise. Since f(k) is uniform in
each cell and E(k)) is discrete, f{E) is a piecewise continuous
{step-like) function.

Figure 10 shows f(£) for fields from 0 to 10 kV/cm. Data
points are shown as continuous lines for clarity. The O-field
curve represents the converged steady-state solution starting
from a (straight line) Fermi—Dirac distribution function and
has the same slope. The most striking aspect of Fig. 10 is that
it shows 14 orders of magnitude. The DKSM is deterministic
in that no random seiections are made, unlike a Monte Carlo
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FIG. 10. Steady-state electron distribufion function vs energy at fields of
0, 10, 10°, 19%, and 10* V/cm. For low fields, the only noticeable change in
FE) from equilibrium is in the tail, i.e., for energies far above k7. The DKSM
is a deterministic, full band method that allows f{E) to be calculated over
many orders of magnitude.
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calculation. The “‘noise’” seen in f(F) is present because of
limits in the precision of the E(k;) and §;; calculations and
because of the mesh discreteness. The precision of fis limited
by the precision of the computer and accumulated numerical
error. This is because the DKSM is a deterministic method and
so can store f(E) over many more orders of magnitude than
even a very large MCM program.

The high-level of precision in the distribution function sug-
gests that DKSM might be an appropriate method in the study
of low-probability events, such as electron emission into oxide
or impact ionization. This level of precision in a method that
includes full band structure makes the DKSM exceptional.

The most telling comparison of the DKSM is in the calcula-
tions of macroscopic observables, such as drift velocity. In the
DKSM, the drift velocity v, is calculated from

2 Vi Ef k),

== 20
2 NG e

Vg

where the group velocity at the center of each cell is proportional
to the k-space derivative of the energy, i.e.,

1 dEk)
V= — 21

f dk @b
Since our DKSM calculations do not consist of a full comple-
ment of scattering mechanisms, we performed full-band MCM
calculations using only intervalley scattering calculated with
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FIG. 11.  Drift velocity vs field comparing calculations from the DKSM,

a compuarable MCM using a scattering rate calculation equivalent to the DKSM,
and a complete MCM from another publication [30]. The complere MCM results
are shown to establish the legitimacy of the other two calculations, although,
unlike the DKSM and the comparable MCM calgulations, it is not a full band
method. The 1200-final-states DKSM calculation agrees with the comparable
MM untif about WP Viem. Decreasing the number of final states decreases
the agreement first at high fields.
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FIG. 12, Average electron energy vs field comparing calculations from
the DKSM, a comparable MCM using a scattering rate calculation equivalent
to the DKSM, and a complete MCM from another publication [30]. Failure of
the DKSM average energy cakculation using 1200 final states oceurs at about
the same field as for the drift velocity calculation (see Fig. 11). The 600- and
100-final-states DDKSM average energies diverge from the 1200-final-states
calculated results at decreasing fields.

the same material parameters (here and in the plots referred to
as comparable MCM). These results are displayed in Figure
11, along with results from a previously published MCM calcu-
lation [30] ¢(here called complete MCM) for overall comparison.
The complete MCM results are expectedly low because addi-
tional scattering mechanisms reduce the mobility. The DKSM
agrees well with the comparable MCM until about 10* Viem.
We attribute this failure to the 1200-final-states limit placed
on the §; calculation becaunse of a program size restriction, as
described in Section 2.5. This claim is further supported by
DKSM calculations that differ only in the maximum number
of final states. The 600-final-states calculation in Fig. 11 shows
divergence from the 1200-final-states calculation only at high
fields. The 100-final-states calculation is erratic because the
approximation is too extreme. In summary, the DKSM performs
as expected, and extrapolation suggests valid high-ficld results
if the number of final states is increased.

Figure 12 shows the average electron energy versus field
calculations from the DKSM compared with the same MCM
calculations. The average electron energy in the DKSM, (E),
is given by

> Ek)f (k)Y

[ o Y A —
) > Fk)

(22)

The 1200-final-states DKSM calculation again agrees well with
the comparable MCM until abour 10" V/cm. Agreement for
the DKSM at high fields decreases as the number of final
states decreases.
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3.2. Possible Compromises

Except for some limited applications, the DKSM in the torm
presented here is inappropriate for most transport calculations
on standard computers. Although it shows promise for advanced
computers and for future computers as standard disk space and
memory increase, it is too large for common use on present-
day PCs and workstations. Several compromises are currently
available, however, that can make the DKSM far more usable
without waiting for the next generation of computers. The ap-
propriateness of the compromise depends on the application
and calculation goals.

The most direct way to limit the program size is to limit the
number of final states. Reducing the number of final states also
speeds the calculation, since profiling indicates that, over-
whelmingly, most CPU time is spent in the scattering routine.
The simplest way to decrease the number of states is to not
use a full band calculation. A two-valley effective mass model
is a reasonable alternative [17]. High field transport and calcula-
tions involving low-probability events are sacrificed in this ap-
proach.

Gridding the Brillouin zone with a non-constant cell size is
another way to decrease the number of final states. The density
of states increases sharply above the band edge, reducing the
need for closely spaced cells in & space at high energy. There-
fore, the most obvious, least compromising gridding scheme
is fo use small cells near the valley extrema and large cells oth-
erwise.

Program speed will become an issue in the future develop-
ment of the DKSM. Run time is a sensitive function of the
number of final states and convergent criterium. For example,
for 30 intervals between I' and X points, to converge the average
energy to within 0.005% across a time step, the DKSM normally
takes half a day on an HP720 (comparable to a MCM calcula-
tion). The scattering procedure is simpler in the DKSM than
in the MCM, but there is a speed cost for increased precision.

Several changes can be made to decrease the run time. First,
drift does not have to be limited to adjacent cells. This is not
expected to have a significant effect, however, since in our
experience almaost all the CPU time is spent in the scattering
routine, Efforts to improve memory stride by sequencing the
5, array might be worthwhile. Besides decreasing the number
of final states in S;, perhaps the most promising approach is
to limit the precision of f{k;) to reduce the number of scatterings.

If the memory problerns are overcome, then the DKSM will
extend well to certain regimes of device modeling. Applying
the DKSM to device simulations will require the distribution
function to include a spatial dimension. Heterojunctions will
require multiple §;; calculations, Each will further stress memory
needs. A deterministic, full-band method, however, is an ideal
tool for studying rare events, such as oxide emission or impact
ionization, and for high-field transport. As described in Section
2.3, the DKSM might also be the best choice for massively
parallel calculations because of synchronization advantages.

BAILEY AND HIGMAN

4. CONCLUSION

The DKSM is very similar to the MCM in the way it solves
the Boltzmann transport equation, yet it is profoundly different
in the way it stores the solution, the distribution function. Like
the MCM, the DKSM is computationally expensive, even more
so in terms of memory usage. Unlike the MCM, the DKSM is
deterministic and therefore lacking stechastic noise. It also
promises to be more adaptable to modern vector and parallel
computers than the MCM.

In the process of describing the DKSM in detail, we have
openly discussed the shortcomings of the DKSM. We have
also shown, in comparisons to the MCM, that the DKSM per-
forms well for homogeneous steady-state transport, especially
considering program size limitations. Overall, we have shown
that the DKSM is a viable method and is a strong alternative
candidate to the MCM for aigorithm development on advanced
computer architectures.
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